Source code editor
What Is Ajax
↑
MySQL manages contention for table contents using locking:
Internal locking is performed within the MySQL server itself to manage contention for table contents by multiple threads. This type of locking is internal because it is performed entirely by the server and involves no other programs. See Section 7.3.1, “Internal Locking Methods”.
External locking occurs when the server and other programs lock table files to coordinate among themselves which program can access the tables at which time. See Section 7.3.4, “External Locking”. See Section 7.3.4, “External Locking”.
This section discusses internal locking; that is, locking performed within the MySQL server itself to manage contention for table contents by multiple threads. This type of locking is internal because it is performed entirely by the server and involves no other programs. External locking occurs when the server and other programs lock table files to coordinate among themselves which program can access the tables at which time. See Section 7.3.4, “External Locking”.
MySQL uses table-level locking for MyISAM
and
MEMORY
tables, page-level locking for
BDB
tables, and row-level locking for
InnoDB
tables.
In many cases, you can make an educated guess about which locking type is best for an application, but generally it is difficult to say that a given lock type is better than another. Everything depends on the application and different parts of an application may require different lock types.
To decide whether you want to use a storage engine with
row-level locking, you should look at what your application does
and what mix of select and update statements it uses. For
example, most Web applications perform many selects, relatively
few deletes, updates based mainly on key values, and inserts
into a few specific tables. The base MySQL
MyISAM
setup is very well tuned for this.
MySQL Enterprise. The MySQL Network Monitoring and Advisory Service provides expert advice on when to use table-level locking and when to use row-level locking. To subscribe see http://www.mysql.com/products/enterprise/advisors.html.
Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock avoidance is managed by always requesting all needed locks at once at the beginning of a query and always locking the tables in the same order.
MySQL grants table WRITE
locks as follows:
If there are no locks on the table, put a write lock on it.
Otherwise, put the lock request in the write lock queue.
MySQL grants table READ
locks as follows:
If there are no write locks on the table, put a read lock on it.
Otherwise, put the lock request in the read lock queue.
When a lock is released, the lock is made available to the
threads in the write lock queue and then to the threads in the
read lock queue. This means that if you have many updates for a
table, SELECT
statements wait until there are
no more updates.
You can analyze the table lock contention on your system by
checking the Table_locks_waited
and
Table_locks_immediate
status variables:
mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+
The MyISAM
storage engine supports concurrent
inserts to reduce contention between readers and writers for a
given table: If a MyISAM
table has no free
blocks in the middle of the data file, rows are always inserted
at the end of the data file. In this case, you can freely mix
concurrent INSERT
and
SELECT
statements for a
MyISAM
table without locks. That is, you can
insert rows into a MyISAM
table at the same
time other clients are reading from it. Holes can result from
rows having been deleted from or updated in the middle of the
table. If there are holes, concurrent inserts are disabled but
are re-enabled automatically when all holes have been filled
with new data. This behavior is altered by the
concurrent_insert
system variable. See
Section 7.3.3, “Concurrent Inserts”.
If you want to perform many INSERT
and
SELECT
operations on a table
real_table
when concurrent inserts are not
possible, you can insert rows into a temporary table
temp_table
and update the real table with the
rows from the temporary table periodically. This can be done
with the following code:
mysql>LOCK TABLES real_table WRITE, temp_table WRITE;
mysql>INSERT INTO real_table SELECT * FROM temp_table;
mysql>DELETE FROM temp_table;
mysql>UNLOCK TABLES;
InnoDB
uses row locks and
BDB
uses page locks. Deadlocks are possible
for these storage engines because they automatically acquire
locks during the processing of SQL statements, not at the start
of the transaction.
Advantages of row-level locking:
Fewer lock conflicts when accessing different rows in many threads
Fewer changes for rollbacks
Possible to lock a single row for a long time
Disadvantages of row-level locking:
Requires more memory than page-level or table-level locks
Slower than page-level or table-level locks when used on a large part of the table because you must acquire many more locks
Definitely much slower than other locks if you often do
GROUP BY
operations on a large part of
the data or if you must scan the entire table frequently
Table locks are superior to page-level or row-level locks in the following cases:
Most statements for the table are reads
Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single row that can be fetched with one key read:
UPDATEtbl_name
SETcolumn
=value
WHEREunique_key_col
=key_value
; DELETE FROMtbl_name
WHEREunique_key_col
=key_value
;
SELECT
combined with concurrent
INSERT
statements, and very few
UPDATE
or DELETE
statements
Many scans or GROUP BY
operations on the
entire table without any writers
With higher-level locks, you can more easily tune applications by supporting locks of different types, because the lock overhead is less than for row-level locks.
Options other than row-level or page-level locking:
Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one writer at the same time as many readers. This means that the database or table supports different views for the data depending on when access begins. Other common terms for this are “time travel,” “copy on write,” or “copy on demand.”
Copy on demand is in many cases superior to page-level or row-level locking. However, in the worst case, it can use much more memory than using normal locks.
Instead of using row-level locks, you can employ
application-level locks, such as those provided by
GET_LOCK()
and
RELEASE_LOCK()
in MySQL. These are
advisory locks, so they work only in well-behaved
applications. See Section 12.10.4, “Miscellaneous Functions”.
To achieve a very high lock speed, MySQL uses table locking
(instead of page, row, or column locking) for all storage
engines except InnoDB
,
BDB
, and NDBCLUSTER
.
For InnoDB
and BDB
tables,
MySQL only uses table locking if you explicitly lock the table
with LOCK TABLES
. For these storage engines,
we recommend that you not use LOCK TABLES
at
all, because InnoDB
uses automatic row-level
locking and BDB
uses page-level locking to
ensure transaction isolation.
For large tables, table locking is much better than row locking for most applications, but there are some pitfalls:
Table locking enables many threads to read from a table at the same time, but if a thread wants to write to a table, it must first get exclusive access. During the update, all other threads that want to access this particular table must wait until the update is done.
Table updates normally are considered to be more important
than table retrievals, so they are given higher priority.
This should ensure that updates to a table are not
“starved” even if there is heavy
SELECT
activity for the table.
Table locking causes problems in cases such as when a thread is waiting because the disk is full and free space needs to become available before the thread can proceed. In this case, all threads that want to access the problem table are also put in a waiting state until more disk space is made available.
Table locking is also disadvantageous under the following scenario:
A client issues a SELECT
that takes a
long time to run.
Another client then issues an UPDATE
on
the same table. This client waits until the
SELECT
is finished.
Another client issues another SELECT
statement on the same table. Because
UPDATE
has higher priority than
SELECT
, this SELECT
waits for the UPDATE
to finish,
and for the first
SELECT
to finish.
The following items describe some ways to avoid or reduce contention caused by table locking:
Try to get the SELECT
statements to run
faster so that they lock tables for a shorter time. You
might have to create some summary tables to do this.
Start mysqld with
--low-priority-updates
. For storage engines
that use only table-level locking
(MyISAM
, MEMORY
,
MERGE
), this gives all statements that
update (modify) a table lower priority than
SELECT
statements. In this case, the
second SELECT
statement in the preceding
scenario would execute before the UPDATE
statement, and would not need to wait for the first
SELECT
to finish.
You can specify that all updates issued in a specific
connection should be done with low priority by using the
SET LOW_PRIORITY_UPDATES=1
statement. See
Section 13.5.3, “SET
Syntax”.
You can give a specific INSERT
,
UPDATE
, or DELETE
statement lower priority with the
LOW_PRIORITY
attribute.
You can give a specific SELECT
statement
higher priority with the HIGH_PRIORITY
attribute. See Section 13.2.7, “SELECT
Syntax”.
You can start mysqld with a low value for
the max_write_lock_count
system variable
to force MySQL to temporarily elevate the priority of all
SELECT
statements that are waiting for a
table after a specific number of inserts to the table occur.
This allows READ
locks after a certain
number of WRITE
locks.
If you have problems with INSERT
combined
with SELECT
, you might want to consider
switching to MyISAM
tables, which support
concurrent SELECT
and
INSERT
statements. (See
Section 7.3.3, “Concurrent Inserts”.)
If you mix inserts and deletes on the same table,
INSERT DELAYED
may be of great help. See
Section 13.2.4.2, “INSERT DELAYED
Syntax”.
If you have problems with mixed SELECT
and DELETE
statements, the
LIMIT
option to DELETE
may help. See Section 13.2.1, “DELETE
Syntax”.
Using SQL_BUFFER_RESULT
with
SELECT
statements can help to make the
duration of table locks shorter. See
Section 13.2.7, “SELECT
Syntax”.
You could change the locking code in
mysys/thr_lock.c
to use a single queue.
In this case, write locks and read locks would have the same
priority, which might help some applications.
Here are some tips concerning table locks in MySQL:
Concurrent users are not a problem if you do not mix updates with selects that need to examine many rows in the same table.
You can use LOCK TABLES
to increase
speed, because many updates within a single lock is much
faster than updating without locks. Splitting table contents
into separate tables may also help.
If you encounter speed problems with table locks in MySQL,
you may be able to improve performance by converting some of
your tables to InnoDB
or
BDB
tables. See Section 14.2, “The InnoDB
Storage Engine”,
and Section 14.5, “The BDB
(BerkeleyDB
) Storage
Engine”.
MySQL Enterprise. Lock contention can seriously degrade performance. The MySQL Network Monitoring and Advisory Service provides expert advice on avoiding this problem. To subscribe see http://www.mysql.com/products/enterprise/advisors.html.
The MyISAM
storage engine supports concurrent
inserts to reduce contention between readers and writers for a
given table: If a MyISAM
table has no holes
in the data file (deleted rows in the middle), inserts can be
performed to add rows to the end of the table at the same time
that SELECT
statements are reading rows from
the table.
The concurrent_insert
system variable can be
set to modify the concurrent-insert processing. By default, the
variable is set to 1 and concurrent inserts are handled as just
described. If concurrent_inserts
is set to 0,
concurrent inserts are disabled. If the variable is set to 2,
concurrent inserts at the end of the table are allowed even for
tables that have deleted rows. See also the description of the
concurrent_insert
system variable.
Under circumstances where concurrent inserts can be used, there
is seldom any need to use the DELAYED
modifier for INSERT
statements. See
Section 13.2.4.2, “INSERT DELAYED
Syntax”.
If you are using the binary log, concurrent inserts are
converted to normal inserts for CREATE ...
SELECT
or INSERT ... SELECT
statements. This is done to ensure that you can re-create an
exact copy of your tables by applying the log during a backup
operation. See Section 5.11.3, “The Binary Log”.
With LOAD DATA INFILE
, if you specify
CONCURRENT
with a MyISAM
table that satisfies the condition for concurrent inserts (that
is, it contains no free blocks in the middle), other threads can
retrieve data from the table while LOAD DATA
is executing. Use of the CONCURRENT
option
affects the performance of LOAD DATA
a bit,
even if no other thread is using the table at the same time.
If you specify HIGH_PRIORITY
, it overrides
the effect of the --low-priority-updates
option
if the server was started with that option. It also causes
concurrent inserts not to be used.
For LOCK TABLE
, the difference between
READ LOCAL
and READ
is
that READ LOCAL
allows non-conflicting
INSERT
statements (concurrent inserts) to
execute while the lock is held. However, this cannot be used if
you are going to manipulate the database using processes
external to the server while you hold the lock.
External locking is the use of filesystem locking to manage contention for database tables by multiple processes. External locking is used in situations where a single process such as the MySQL server cannot be assumed to be the only process that requires access to tables. Here are some examples:
If you run multiple servers that use the same database directory (not recommended), each server must have external locking enabled.
If you use myisamchk to perform table
maintenance operations on MyISAM
tables,
you must either ensure that the server is not running, or
that the server has external locking enabled so that it
locks table files as necessary to coordinate with
myisamchk for access to the tables. The
same is true for use of myisampack to
pack MyISAM
tables.
With external locking in effect, each process that requires access to a table acquires a filesystem lock for the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process is blocked from accessing the table until the locks can be obtained (after the process that currently holds the locks releases them).
External locking affects server performance because the server must sometimes wait for other processes before it can access tables.
External locking is unnecessary if you run a single server to access a given data directory (which is the usual case) and if no other programs such as myisamchk need to modify tables while the server is running. If you only read tables with other programs, external locking is not required, although myisamchk might report warnings if the server changes tables while myisamchk is reading them.
With external locking disabled, to use
myisamchk, you must either stop the server
while myisamchk executes or else lock and
flush the tables before running myisamchk.
(See Section 7.5.1, “System Factors and Startup Parameter Tuning”.) To avoid this
requirement, use the CHECK TABLE
and
REPAIR TABLE
statements to check and repair
MyISAM
tables.
For mysqld, external locking is controlled by
the value of the skip_external_locking
system
variable. (Before MySQL 4.0.3, this variable is named
skip_locking
.) When this variable is enabled,
external locking is disabled, and vice versa. From MySQL 4.0 on,
external locking is disabled by default. Before MySQL 4.0,
external locking is enabled by default on Linux or when MySQL is
configured to use MIT-pthreads.
Use of external locking can be controlled at server startup by
using the --external-locking
or
--skip-external-locking
option. (Before MySQL
4.0.3, these options are named --enable-locking
and --skip-locking
.)
If you do use external locking option to enable updates to
MyISAM
tables from many MySQL processes, you
must ensure that the following conditions are satisfied:
You should not use the query cache for queries that use tables that are updated by another process.
You should not start the server with the
--delay-key-write=ALL
option or use the
DELAY_KEY_WRITE=1
table option for any
shared tables. Otherise, index corruption can occur.
The easiest way to satisfy these conditions is to always use
--external-locking
together with
--delay-key-write=OFF
and
--query-cache-size=0
. (This is not done by
default because in many setups it is useful to have a mixture of
the preceding options.)